Foundation University
Rawalpindi Campus

Apresentation Ly Lecturer- ww.rmhjaved.com

RECAP

O MY NAME IS

○ I REMEMBER.........

Objective of Today's Lecture

Relations and Relational Algebra

RDM - Two Major Strengths

Simplicity - Relation Form

Strong Mathematical Foundation

Relational Data Model

O Presented by E, F. Codd in 1970

- Before Relational Data Model, two older data models were in use;
- Hierarchical

O Network

Basics of RDM

O Mainly used for external, conceptual, and to some extent physical schema.

- Separation of conceptual and physical levels makes manipulation much easier, contrary to previous data models.

Basics of RDM

O The basic structure is relation.
o Relations physically represented as tables.
Consists of rows and columns
O Both entities and relationships are modeled using tables/relations.

Basics of RDM

o Columns represent attributes and rows represent records.

O Rows, records and tuples all these terms are used interchangeably.

A Table/Relation

stID	stName	clName	doB	Gender
S001	Zofeen	BCSE	$12 / 6 / 92$	F
S002	Rohaf	BCSE	$3 / 9 / 92$	M
S003	Noshail	BSCS	$7 / 8 / 93$	F
S004	Rameen	BCA	$23 / 4 / 94$	F
S005	Bilaval	BBA	$22 / 7 / 93$	M

Relation - Terminology

- Degree of a relation: how long the tuples are, or how many columns the table has.

0 In the exemplary relation, degree of the relation is 5

- Cardinality of the relation: how many different tuples are there, or how many different rows the table has.

O In the exemplary relation, cardinality of the relation is 5

Mathematical Relations

- Consider two sets
$A=\{x, y\}$
$B=\{2,4,6\}$
- Cartesian product of these sets $A X B=\{(x, 2),(x, 4),(x, 6),(y, 2),(y, 4),(y, 6)\}$

Mathematical Relations

- A relation is some subset of this Cartesian product, For example
$R 1=\{(x, 2),(y, 2),(x, 6),(x, 4)\}$
$R 2=\{(x, 4),(y, 6),(y, 4)\}$

Relational Model: Data Manipulation

O Data is represented as relations.

- Manipulation of data (query and update operations) corresponds to operations on relations.
- Relational algebra describes those operations. They take relations as arguments and produce new relations.
- Think of numbers and corresponding operators,,+- 1 , * or booleans and corresponding operators \&, |,! (and, or, not).
- Relational algebra contains two kinds of operators: common set-theoretic ones and operators specific to relations (for example projecting on one of the columns).

Union

O Standard set-theoretic definition of union:
$A \cup B=\{x: x \in A$ or $x \in B\}$

O For example, $\{a, b, c\} \cup\{a, d, e\}=\{a, b, c, d, e\}$

- So we require in order to take a union of relations R and S that R and S have the same number of columns and that corresponding columns have the same domains.

Union - Compatible Relations

o Two relations R and S are union-compatible if they have the same number of columns and corresponding columns have the same domains.

Example: Not Union Compatible

o Not Compatible!
O Different number of columns!

Anne	aaa	111111
Bob	bbb	222222
Chris	ccc	333333

Tom	1980
Sam	1985
Steve	1986

Example: Not Union Compatible

- Not Compatible!
- Different domains for the second column!

Anne	aaa
Bob	bbb
Chris	ccc

Tom	1980
Sam	1985
Steve	1986

Example: Union-Compatible

Anne	1970
Bob	1971
Chris	1972

Tom	1980
Sam	1985
Steve	1986

Union of Two Relations

0 Let R and S be two union-compatible relations. Then their union $R \cup S$ is a relation which contains tuples from both relations:

$$
R \cup S=\{x: x \in R \text { or } x \in S\} \text {. }
$$

O Note that union is a partial operation on relations: it is only defined for some (compatible) relations, not for all of them.

O Similar to division for numbers (result of division by 0 is not defined).

Example: Shopping Lists

R

Cheese	1.34
Milk	0.80
Bread	0.60
Eggs	1.20
Soap	1.00

Cream	5.00
Soap	1.00

$R \cup S$

Cheese	1.34
Milk	0.80
Bread	0.60
Eggs	1.20
Soap	1.00
Cream	5.00

Difference of Two Relations

Let R and S be two union-compatible relations. Then their difference $R-S$ is a relation which contains tuples which are in R but not in S :

$$
R-S=\{x: x \in R \text { and } x \notin S\} \text {. }
$$

O Note that difference is also a partial operation on relations.

Example

R

s

Cream	5.00
Soap	1.00

$R-S$

Cheese	1.34
Milk	0.80
Bread	0.60
Eggs	1.20
Soap	1.00

Cheese 1.34 Milk 0.80 Bread 0.60
Eggs 1.20

Intersection of Two Relations

O Let R and S be two union-compatible relations. Then their intersection is a relation $R \cap S$ which contains tuples which are both in R and S :

$$
R \cap S=\{x: x \in R \text { and } x \in S\}
$$

O Note that intersection is also a partial operation on relations.

Intersection

R

s
$R \cap S$

Cheese	1.34
Milk	0.80
Bread	0.60
Eggs	1.20
Soap	1.00

Cream	5.00
Soap	1.00

$$
\text { Soap } 1.00
$$

CHHUTTI

$$
\begin{aligned}
& \text { AND THAJT JS } \\
& \text { FARENYELL TO } \\
& \text { DAY } 15 \text { © }
\end{aligned}
$$

