

#### **Foundation University**

Rawalpindi Campus

Introduction to Database Systems – CSC - 221 APresentation by R.M.Hafeez Javed WWW.rmbjaved.com



O MY NAME IS.....

✓ I REMEMBER......

#### Objective of Today's Lecture

Relations and Relational Algebra

# **RDM – Two Major Strengths**

Simplicity – Relation Form

**Strong Mathematical Foundation** 

### **Relational Data Model**

- Presented by E. F. Codd in 1970
- Ø Before Relational Data Model, two older data models were in use;
- Hierarchical
- O Network

#### **Basics of RDM**

 Mainly used for external, conceptual, and to some extent physical schema.

 Separation of conceptual and physical levels makes manipulation much easier, contrary to previous data models.

#### **Basics of RDM**

- The basic structure is relation.
- O Relations physically represented as tables.
- Oconsists of rows and columns
- Both entities and relationships are modeled using tables/relations.

### **Basics of RDM**

Columns represent attributes and rows represent records.

 Rows, records and tuples all these terms are used interchangeably.

# A Table/Relation

| stID | stName  | clName | doB     | Gender |
|------|---------|--------|---------|--------|
| S001 | Zofeen  | BCSE   | 12/6/92 | F      |
| S002 | Rohaf   | BCSE   | 3/9/92  | Μ      |
| S003 | Noshail | BSCS   | 7/8/93  | F      |
| S004 | Rameen  | BCA    | 23/4/94 | F      |
| S005 | Bilaval | BBA    | 22/7/93 | Μ      |

# **Relation - Terminology**

- *Degree of a relation*: how long the tuples are, or how many columns the table has.
  - In the exemplary relation, degree of the relation is 5

- Cardinality of the relation: how many different tuples are there, or how many different rows the table has.
  - In the exemplary relation, cardinality of the relation is 5

# **Mathematical Relations**

O Consider two sets

A = {x, y}
B = {2, 4, 6}

Cartesian product of these sets
 A X B = {(x,2), (x,4), (x,6), (y,2), (y,4), (y,6)}

#### **Mathematical Relations**

 A relation is some subset of this Cartesian product, For example

 $O R1 = \{(x,2), (y,2), (x,6), (x,4)\}$ 

 $O R2 = \{(x,4), (y,6), (y,4)\}$ 

### Relational Model: Data Manipulation

- Data is represented as relations.
- Manipulation of data (guery and update operations) corresponds to operations on relations.
- Relational algebra describes those operations. They take relations as arguments and produce new relations.
- O Think of numbers and corresponding operators +,-,\, \* or booleans and corresponding operators &,|,! (and, or, not).
- Relational algebra contains two kinds of operators: common set-theoretic ones and operators specific to relations (for example projecting on one of the columns).

### Union

Standard set-theoretic definition of union:

 $\mathcal{O} \ \mathsf{A} \cup \mathsf{B} = \{ \mathsf{x} \colon \mathsf{x} \in \mathsf{A} \text{ or } \mathsf{x} \in \mathsf{B} \}$ 

✓ For example, {a,b,c} ∪ {a,d,e} = {a,b,c,d,e}

So we require in order to take a union of relations R and S that R and S have the same number of columns and that corresponding columns have the same domains.

#### **Union – Compatible Relations**

Two relations R and S are union-compatible if they have the same number of columns and corresponding columns have the same domains.

### **Example: Not Union Compatible**

#### O Not Compatible!

O Different number of columns!

| Anne  | aaa | 111111 | Tom   | 1980 |
|-------|-----|--------|-------|------|
| Bob   | bbb | 222222 | Sam   | 1985 |
| Chris | CCC | 333333 | Steve | 1986 |

### **Example: Not Union Compatible**

#### O Not Compatible!

O Different domains for the second column!

| Anne  | aaa | Tom   | 1980 |
|-------|-----|-------|------|
| Bob   | bbb | Sam   | 1985 |
| Chris | CCC | Steve | 1986 |

# **Example: Union-Compatible**

| Anne  | 1970 |
|-------|------|
| Bob   | 1971 |
| Chris | 1972 |

| Tom   | 1980 |
|-------|------|
| Sam   | 1985 |
| Steve | 1986 |

# **Union of Two Relations**

✓ Let R and S be two union-compatible relations. Then their union R ∪ S is a relation which contains tuples from both relations:

 $\mathsf{R} \cup \mathsf{S} = \{ x : x \in \mathsf{R} \text{ or } x \in \mathsf{S} \}.$ 

 Note that union is a partial operation on relations: it is only defined for some (compatible) relations, not for all of them.

Similar to division for numbers (result of division by 0 is not defined).

# **Example: Shopping Lists**

| R      |      | S     |      | <b>R</b> U | S    |
|--------|------|-------|------|------------|------|
| Cheese | 1.34 | Cream | 5.00 | Cheese     | 1.34 |
| Milk   | 0.80 | Soap  | 1.00 | Milk       | 0.80 |
| Bread  | 0.60 |       |      | Bread      | 0.60 |
| Eggs   | 1.20 |       |      | Eggs       | 1.20 |
| Soap   | 1.00 |       |      | Soap       | 1.00 |
|        |      |       |      | Cream      | 5 00 |

5.00

#### **Difference of Two Relations**

Let R and S be two union-compatible relations. Then their *difference* R – S is a relation which contains tuples which are in R but not in S:

 $R - S = \{x: x \in R \text{ and } x \notin S\}.$ 

 Note that difference is also a partial operation on relations.

# Example

| R      |      | S             |      |  | R – S          |      |  |
|--------|------|---------------|------|--|----------------|------|--|
| Cheese | 1 24 | Croom         | E 00 |  | Chaosa         | 1 24 |  |
| Milk   | 0.80 | Cream<br>Soap | 1.00 |  | Cheese<br>Milk | 0.80 |  |
| Bread  | 0.60 |               | 1100 |  | Bread          | 0.60 |  |
| Eggs   | 1.20 |               |      |  | Eggs           | 1.20 |  |
| Soap   | 1.00 |               |      |  |                |      |  |

#### Intersection of Two Relations

✓ Let R and S be two union-compatible relations. Then their *intersection* is a relation R ∩ S which contains tuples which are both in R and S:

 $\mathsf{R} \cap \mathsf{S} = \{ x : x \in \mathsf{R} \text{ and } x \in \mathsf{S} \}$ 

 Note that intersection is also a partial operation on relations.

# Intersection

| R      |      | S     |      | <b>R</b> $\cap$ |
|--------|------|-------|------|-----------------|
| Cheese | 1.34 | Cream | 5.00 | Soap            |
| Milk   | 0.80 | Soap  | 1.00 |                 |
| Bread  | 0.60 |       |      |                 |
| Eggs   | 1.20 |       |      |                 |
| Soap   | 1.00 |       |      |                 |
|        |      |       |      |                 |

S

1.00

# CHHUTTI

# AND THAT IS FAREWELL TO DAY 15 ©